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Dispersion in Anisotropic Media Modeled
by Three-Dimensional TLM

Christian Huber, Michael Krumpholz, Member, IEEE, and Peter Russer, Fellow, IEEE

Abstract-The dispersion in anisotropic media modeled by
three-dimensional TLM is investigated. ‘I’wo nodes, the symmet-
rical condensed node with stubs and the symmetrical super-
condensed node are considered. Simple closed-form expressions
for the dispersion relations do not exist. in general, therefore
the investigations are restricted to wave propagation in isotropic
media and to wave propagation along the mesh axes and the mesh
diagonals. The dispersion analysis for the symmetrical super-
condensed node yields a direct relationshiip between the relative
permittivity and relative permeability and[ the parameters of the
scattering matrix.

I. INTRODUCTION

F OR the modeling of distributed circuits with arbitrary
geometries including also anisotropic media, numerical

methods based on the discretization of Maxwell’s equations
like the finite difference time domain (FDTD) method [1] or
the transmission line matrix (TLM) method [2] have become
more and more popular due to their high flexibility. For
the three-dimensional TLM modeling of anisotropic media,
various TLM schemes based on different nodes have been

developed and tested successfully [2]–[5]. However, there
have been only a few investigations about the dispersion of

these three-dimensional TLM schemes. Some results on the
dispersion in a mesh of expanded TLM nodes with stubs,
of symmetrical condensed nodes (SCN) with stubs and of

symmetrical super-condensed nodes (SSCN) have been given
[6]-[8]. Considering the dispersion relations is important since
deviations from the linear dispersion behavior degrade the
accuracy of the field computation. Furthermore, from the
dispersion relations, unphysical modes, i.e., modes not con-
verging to solutions of Maxwell’s equations may be identified.
In this paper, a systematic comparison of the dispersion

behavior and of the occurrence of unphysical modes is given
for the SCN with stubs and for the SSCN.

The dispersion relations for wave propagation in free space

have already been calculated in the literature for various FDTD
and TLM schemes [9]–[ 13]. We use a general approach for
the computation of the dispersion relations based on the state
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space representation of the diseretized electromagnetic field
[14]-[16]. The dispersion relations of the two investigated
TLM schemes are calculated frc~m the solutions of the eigen-
value problem in the field state space. We distinguish between
physical and unphysical eigenvectors in the field state space.
Physical eigenvectors describe solutions of the TLM scheme

which converge to solutions of Maxwell’s equations for fre-

quencies or discretization intervals approaching zero, whereas
unphysical eigenvectors describe spurious solutions which are
introduced by the discretization of Maxwell’s equations [17].

The paper is organized in three parts. In the first part, the
plane wave solutions of Maxwell’s equations are investigated.
The approach is similar to the approach presented in [18]. In
general, there are no simple clclsed-fortn expressions for the
dispersion relations of Maxwell’s equations describing wave
propagation in anisotropic media. Therefore, we restrict our
further investigations to the cases in which simple expressions
for the dispersion relations of Maxwell’s equations exist. These

cases are the wave propagation in isotropic media and the
wave propagation along the mesh axes and mesh diagonals in
symmetric anisotropic media. In the second and third part,
for these cases, we investigate the dispersion of the TLM
schemes for the SCN with stubs and for the SSCN. A simple
closed-form expression for the dispersion relation exists for the
SSCN modeling isotropic media [8]. For all other investigated

cases, the polynomials representing the implicit dispersion
relations are given. Approximating the polynomials of the
SSCN for wave propagation along the mesh axes yields a
direct relationship between the parameters of the scattering
matrix and the relative permittivity and relative permeability
in symmetric anisotropic media.

II. PLANE WAVE SOLUTIONS OF MAXWELL’s EQUATIONS

Maxwell’s equations for anisc~tropic media are given by

dE

‘xH=&%-
(1)

VxE=--p~. (2)

In the principal coordinate system, the pennittivity tensor e and
the permeability tensor p for symmetric media are given by

&=

and
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In cartesian components, Maxwell’s equations may be written
as
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From (4), we obtain in spectral domain

~[JG, Ey, E., Hz, Hy, H.]T = O (5)

where we have introduced the matrix

[

WEZ o 00 I%z ky
o ~~!l o k, o k. 1

I
WEZ

M= : ; ~ ‘y : 0

—WP:C Io“
(6)

kz { k: o —Wpy o

ky k. o 0 0 —wpz

The cartesian components of the wavevector ~ are kZ, ky, and
k.. The angular frequency w is related to the frequency f by
w = 2~ f. For any nontrivial solution (5) requires [18]

det (A4) = O (7)

which yields a characteristic polynomial in w, km, kg, and kZ

(8)

(9)

‘ Equation (8) has six solutions w, representing the disper-

sion relations of the six possible plane wave solutions for

Maxwell’s eauations in svmmetric anisotroDic media. The

solution WI,z = O represents a stationary solution corre-

sponding to the electro- and magnetostatic case. The other
four solutions w3, 4,5, fj correspond to propagating plane wave
solutions of Maxwell’s equations. In general, simple closed-
form expressions do not exist for W3,~, ~,G [18]. In case of
wave propagation along the $-axis and in (1, O, 0) direction,
respectively, we have kv = kZ = O and obtain from (8)

Wz(k: – e#2w2)(kj – Ez/J?,w2) = o. (10)

Similar expressions may be derived for wave propagation
along the y- and z-axis. For wave propagation along the diag-
onal in the x–y-plane and in (1, 1, O) direction, respectively,
we have k. = kg as well as kZ = O yielding

W2[( E., + E’v)rk: – S,CEvpzw2]

~ [( P.+ LLy)k: - SZp.vyw’] = o. (11)

Similar expressions may be derived for wave propagation
along the diagonals in the x–z- and y–z-plane. A significant
simplification of (8) is also given for isotropic media leading to

Wz(k: + k; + k: – spw2)2 = o. (12)

Of course, analyzing the dispersion of a TLM scheme, we can
only expect to find simple algebraic expressions for the cases
in which simple algebraic expressions exist for Maxwell’s
equations. Therefore, for the dispersion analysis of the TLM

method with stub-loaded SCN and SSCN, we will restrict

ourselves to the three cases described by (10), (11), and (12).

III. THE DISPERSION ANALYSIS OF

TLM WITH STUB-LOADED SCN

Using the state space representation for the electromagnetic

field presented in [14]–[ 16], the amplitudes of all incident and

scattered waves are summarized in tie Hilbert space vectors

+Cc

\a) = E kal, m,nlk; 1, m, n)

k,l, m,nz–cx

and

lb) = E /J@Jk; i, ‘m, n). (13)

k,l, m,n=–cc

The complete electromagnetic field state is represented by a
single vector Ia) and Ib), respectively, in the field state space
H~. The field state space is a product space of three vectors
spaces, fi~t- = C“ @ l’i~ @ ?-&. In the r-dimensional complex
vector space C’, all the r wave amplitudes of the TLM node
with the coordinates k, 1, m, and n are summarized in the

VeCtOrS kU ~,~, ~ and kb ~,~, ~, respectively. The indices 1,
m, n, and k are the discrete space and time indices related
to the space and time coordinates via x = lAl, y = mAl,
z = nAl and t = kAt where Al and At represent the space

and time discretization interval. To each mesh node with the
coordinates 1, m, and n, we assign a base vector 11,m, n).
The set of vectors 11,m, n) is an orthonormal base of the
Hilbert space ?&. The time states are represented by the
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base vectors I/c) in the Hilbert space ‘Ht. The base vectors

Ik; 1, m, n) = Ik) @11,m, n) fulfill the orthogonality relations

(kl; Jl, ml, n11k2; 12, w, Tt2) =

~k,,ks~l,,lz~m,,m~~n,,r,,. (14)

In TLM the instantaneous propagation of all wave pulses in

the mesh between adjacent node ports nnay be described by

la) = Tlb). (15)

The connection operator r relates the waves scattered by the
TLM cells with the waves incident into the neighboring TLM
cells. In the TLM Hilbert space representation, r is a matrix
of space shift operators [14]. The equation

lb) = Z’Sla) (16)

describes the simultaneous scattering at all the mesh nodes, S
is the scattering matrix of the TLM node and T is the time

shift operator defined by

Tlk; /, m, n) = /k+ 1; i, m, n) (17)

thus indicating that the scattering by a mesh node is con-
nected with the time delay At.Eliminating the scattered wave
amplitudes, we obtain the eigenvalue equation

(rTs - l)la) = o (18)

in the field state space ‘Htv. We introduce new base vectors

of ?&,

with
base

(19)

k=–cc

the normalized frequency !2 = 2~Atf, as well as new
vectors for 7&,

IX, V, (’) = ~ e’(xz+’m+cn)ll, m, n) (20)

l,m, n=–cc

with the normalized wave vector components x = AlkZ,

q = AlkY, and ~ = Alkx. As shown in [13], restricting the
dispersion analysis to the case of plane wave propagation, (18)
yields

(TS - e~n)d(x, n, $) = O (21)

in frequency and wave vector domain. The vector of the plane

wave amplitudes, d(x, q, ~), is given by

+m

~(x, T’, c) = E ka~, m,ne
–3(xt+Tlm+tn) (22)

l,m, n=–m

The connection operator in wave vector domain, r, represents
an r-dimensional matrix with the elements e~~, e~~, and e~~.
(21) requires

det (TS – e~~) = O (23)

for any nontrivial eigenvector ii(x, q, ().
The scattering of the wave amplitudes at one stub-loaded

SCN is described by a 18x 18 matrix [3]. In comparison with

1925

the SCN for the free space [3], six stubs have been added in
order to model dielectric and magnetic media. The scattering
matrix in symmetrical notation [16], [19] is given by

where

with

[1s= So KT

KL

I-o O C,y az, -!

I
azy CzY 00
cry ary 00@ =
00 ayx Cyz 1

L O 0 Cyz au., -1

ro O dz –dzl

(24)

(25)

(26)

as well as (27), shown at the bottom of the next page, and

gzo o 0 0 0

11Oggoooo

L=oogzooo
O 0 Ohr O O“

(28)

o OOOhy O
0000 0 hz

The matrix elements for the subscripts i, j G {$; y; z} are
given by

Yi z]
a -——

“~ – 2(~+4) - + 2(Z3 +4)

b, =

CZ, J =

d, =

et =

2

–2(Yi + 4J –

2

Z;+4

Y~+4

Zj

2(Z1 +4)
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2~fi=—
zt+4
Yi–4

9’=Yi+4
Z.–4

hi =–—
Z,+4

(29)

wherein

(

AyAz
Z.=4 P.. m–l

)

( AXAZ _ ~
ZY=4 p.y —

AyAl )

( AxAy
ZZ=4 p.z=–l

)

(

AyAz _ ~
Y.=4 &.z —

AxAl )

(

AXAZ _ ~
YY=4 ETy—

AyAl )

( AxAy
YZ=4 E,z=–l

)
(30)

with LG-i= LLi/LLO and Eri = %/s.. For the dispersion analysis
of the SCN with stubs, we assume Ax = Ay = AZ = Al.
In this case, the connection operator in wave vector domain
is given by

r = e-~x(A1,2 + A3)4) + e~X(Aa, I + AA, 3)

+ e-Jq(A~,6 + A7, g) + eJq(A6,5 + A8, 7)

+ e-~~(A9, lo + AII, U) + eJ<(AIO,g + A12, II) (31)

+ zL3, 13 + zL4, 14 + zk5, 15 – zh6, 16

– A17, 17 – A18, 18 (32)

with the 12 x 12 (m, n)-matrix (Am/,n/)m,~ = Sin/,m&/,n.
We consider wave propagation in (1, O, O) direction in

symmetric anisotropic media. In this case, we have ~ = ~ = O.
There are eighteen eigenvalues Ai = e~~’ of (21) and eighteen

solutions of the characteristic (23), respectively. Ten of the

eigenvalues are given by

A1,2=1

and

As)...,lo = –1. (33)

The eigenvectors corresponding to these eigenvalues describe
nonpropagating solutions in a TLM mesh. As A = 1 implies
0 = O, the eigenvalues Al, a represent the electro- and
magnetostatic case. As A = – 1 implies Q = T, the eigen-
vectors corresponding to A3, ,,,, 10 are unphysical eigenvectors

oscillating with the frequency ~ = 1/ (2At). The other eight

eigenvalues are given implicitly by the following factors of
the characteristic equation

co,)~ + C1J3 + 2C2LA2 + C1, A + Coz = o (34)

and with A = eJn by

co, Cos (2Q) + Cli Cos (0) + cat = o. (35)

The two factors of the characteristic equation are specified by

the two different sets of coefficients

co, =(4+ Y,)(4+ZZ)

Cll = 2(2YY + 2Z. + Y,zz)[cos (x) – 1]

(721= YVZZ – 2(8+ 2YV+ 2.2, + YYZ.) COS(X) (36)

and

CI)Z=(4+YZ)(4+ZV)

C12 = 2(2Y. + 2Z, + Y.z,)[cos (x) – 1]

(722 =Y.ZV – 2(8 + 2YZ + 22’Y+ Y.ZV) COS (x). (37)

We approximate (35) for frequencies and wave numbers
approaching zero using cos x z 1 – X2/2 and obtain

[

At2
4k: – (4+ YY)(4+ z=) =W2 1

[
. 4k: – (4+ Y,)(4+zg)gw2

1
=0 (38)

and

“[ At2 1k: – 4&rz/Lry ~ W2 = o (39)

respectively. With the well-known relation co/cm = 1/2 [3],
where co represents the wave propagation velocity of the free

space and cm = Al/At the velocity of the wave pulses in the
TLM mesh, (39) is identical with the dispersion relation of
the propagating plane wave solutions of Maxwell’s equations
given by (10). For wave propagation along the y- and z-axis,
a dispersion analysis yields similar results.

Fig. 1 illustrates the dispersion in a TLM mesh for wave
propagation in (1, O, O) direction in a symmetric anisotropic
medium with &,Z = 8, Eru = 2, Erz = 1.5 and prx = 2,
p,U = 1, ~rZ = 2.5. For the figures in this paper, we generally
consider only the eigenvalues describing propagating solutions
of the TLM scheme. In the diagram, there are two branches
of the linear dispersion curve corresponding to the solutions

K=

O 0 0 0 0 Oez ez e. e. O 0

eY eY 00000000 euey

o 0 e= ez ez ez O 0 0 0 0 0
0000 -fzfzooo o f. –f.

o fY–fY o 0 0 0 –fy fY o 0
-;zfzooo o fz–fz o 0 0 0

(27)
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Fig. 1. Dispersion diagram for propagation m (1, O,O)direction, SCN wittr
stubs, anisotropic medium.

of the characteristic (10) for O < 0 < n and corresponding

to the four propagating plane wave solutions of Maxwell’s

equations, respectively (degeneration of the eigenvalues). For
the SCN with stubs, two branches of the dispersion curve
are identical with the two branches of the linear dispersion
curve for frequencies approaching zero. The corresponding
four eigenvectors represent physical eigenvectors. The other

two branches do not converge to the branches of the linear

dispersion curve, thus the corresponding four eigenvectors
represent unphysical eigenvectors.

Considering wave propagation in (1, 1, O) direction, we have

x = q as well as f = O. Evaluating (23) we obtain the six
eigenvalues

A1,2=1

and

~3,..., fj =–1. (40)

Again, the corresponding eigenvectors describe electro- and

magnetostatic solutions and unphysical solutions, respectively.
The other twelve eigenvalues ~7, ....18 are given implicitly by

CoiA6 + C1, A5 + C’2J4 + 2CS,A3

+ c2iA2 + cl,} + Ccll = o (41)

and with A = e~Q by

COi COS(3ft) + Cl, COS(2!2) + Czi COS(0) + C3t = O. (42)

The coefficients are

Col =(4+ Y.)(4 + Y,)(4 + z.)

CII = 4(4Yz + 4YY + 2YzYv + 8zz + 3Kz,

+ 3Y~.zz + Ky-uzz) Cos (x)

+ 2(64+ 8Yz + 8YV – 2YaZ. – 2YvZz – YzYvZz)

Czl = –2(16 + 4YZ + 4YY – 4-Z. – 2Y2.Z.

– 2YVZZ – YZYYZZ) Cos (2X)

– 8(16+ 42. + 2YZZZ + 2YJZZ + Y-.YVZZ)

. COS (x) + 96 – 8Yz – 8YY – 4YzYY

+ 82. + 8YZZZ + 8YYZX+ 51YzYgZz

C31 = –2(16 + 4YZ + 4YY + 42. + 2YZZ2

+ 2YYZZ + Y. YyZz) CC~S(2X) – 4(32+ 4YZ

+4Yy + 2Y.YV – Yzz, – Yvz, – Y. YYZZ)

. COS (x) + 4(8 – 2YZ -- 2YY – 6ZZ – 2~X Zz

– 2YYZ. – YZYVZZ) (43)

and

CI)2 =(4+ YZ)(4 + L-)(4 + z,)

C12 = 4(42. + 4ZY + 2ZZZY + 8YZ + 3YZZZ

+ 3YZZY + Yzz.zy) cm (x)

+ 2(64+ 8ZZ + 8ZY – 2YZZX – 2YZZV – YZZZZV)

C22 = –2(16+ 42. + 4ZY – 4YZ – 2YZZL

– 2YZZ, – Yzz.zv) Ccls(2X)

– 8(16+ 4YZ + 2YZZZ + 2YZZY + Y.zzzy)

. COS (x) + 96 – 82. – 8ZU – 4ZZZV + 8Y,

+ 8Y,Z. + 8Y.ZY + 5Y.Z.ZV

C32 = –2(16 + 42. + 4ZY + 4YZ + 2YZZX

+ 2Y.ZY + Y. Z.ZU) COS (2x) – 4(32+ 42.

+4ZY + 2Z.ZV – Y2Z. – Yzzy – Yzazg)

. COS (x’) + 4(8 – 2,2--- 2ZY – 6YZ

– 2YZZZ – 2Y.Z, – Ijz.zg). (44)

The approximation of (42) for frequencies and wave numbers
approaching zero yields

[
4(8 +Yz + Yv)k: – (4+Yz)

At~
.(4+ Y,)(4+ z.) _bJ’

1

[
4(8+ 2. + Zy)k: – (4+YZ)

1
.(4+ 2.)(4 + .2,) g w’ = o (45)

and

in terms of ~r, and Kri. Again, USing CO/C~ = 1/2, we

obtain a result which is identical with the dispersion relation of
the propagating plane wave solutions of Maxwell’s equations,
(11). Similar results may be calculated for wave propagation

along the diagonal in the z–z- and y–z-plane.
Fig. 2 depicts the results of t!he numerical evaluation of (42)

for a symmetric anisotropic medium with sTX = 8, &r.y = 2,

& – 1.5 and u,. = 2, LLry= 1, ur. = 2.5. As in Fig. 1, there?-z —

are two branches of the dispersion curve for the SCN which
are identical with the two branches of the linear dispersion
curve for frequencies approaching zero thus corresponding to
four physical eigenvectors. There are four branches which do
not converge to the branches of the linear dispersion curve.
Whh each of these branches, one unphysical eigenvector is



1928 IEEETRANSACTIONSON MICROWAVETHEORYANDTECHNIQUES.VOL 43, N0. 8, AUGUST 1995

rc I
I LinearDspersion
I \— Relation
1
I
I ~ ‘1 ---- D,speraionforScN

ruz

rru

Fig. 2. Dispersion diagram forpropagationm (l, l, O)direction, SCNwKh
stubs, anisotropic medium.

associated so that there is no degeneration of the corresponding
eigenvalues.

We investigate the wave propagation in isotropic media.
For this case, we have ~vZ = &.u = ~TY = ET as well

as p.. = w-y = p+-, = pr and therefore 2. = ZV =
Zz = Z as well as Y. = Yy = Y. = Y. In contrast to
(12), the evaluation of (23) does not yield a simple algebraic

expression. Thus, for isotropic media, we only consider wave
propagation in (1, O, O) direction, in (1, 1, O) direction

and in (1, 1, 1) direction (along the space diagonal with
respect to the TLM mesh). For wave propagation in (1, O,

O) direction, the characteristic polynomials, (34), may not be
simplified significantly assuming the isotropic case. For wave
propagation in (1, 1, O) direction, the polynomial in (41) splits

in two parts. The eigenvaktes Al,..,, G are again given by (40),
whereas the eigenvalues ~7) ..,, 10 are given by

coiJ2 + 2C1ZA + co, = o (47)

and with A = e~s] by

COi Cos (L?) + q, = o (48)

with

CI)1=4+Z,

Cll =(2+ z) Cos (x) + 2 (49)

and

co~=4+Y,

clq =(2+ Y) Cos (x) +2. (50)

We approximate (48) for frequencies around ~ = l/(2 At)
using cos (x + n-) N – 1 + x2/2 and for wave numbers
approaching zero using cos x z 1 – x2/2. We obtain

[
(2+ Z)k:-(4+Z)#U2

1

[ 1
~ (2+ Y)k:-(4+Y)#w2 =0 (51)

and

[(1-+)-$”21

[(1-+ )k’-sw21=0 “2)

respectively. The eigenvectors corresponding to these eigen-
values describe unphysical solutions propagating with a prop-
agation velocity different from the propagation velocity of
the physical solutions. However, using an excitation with a
frequency spectrum bounded sufficiently below ~ = l/(2At),

the unphysical solutions will not be excited and thus, they will

not affect the accuracy of the field computation.

The other eight eigenvalues All,,,., ~gare given by the fol-
lowing factors of the characteristic equation

cotA4 + CI,A3 + 2c2,J2 + CI,A + cot = o (53)

and

cot Cos (2Q) + Cli Cos (Q) + cz~ = o (54)

respectively, specified by the two different sets of coefficients

C(II =(4+ Y)(4+Z)

@ = 2(2Y + YZ – 8)[COS(X) – 1]

C21 = YZ – 42 – 2(8 + 2Y + YZ) COS (x) (55)

and

C02 =(4+ Y)(4+Z)

C12 = 2(2.Z + YZ – 8)[COS(X) – 1]

C2Z =YZ – 4Y – 2(8+22+ YZ) COS(,X). (56)

As for wave propagation in (1, O, O) direction in isotropic

media, for both sets of coefficients, (54) converges to the same
linear dispersion relation for frequencies and wave numbers
approaching zero. Using cos x % 1 – X2/2, we obtain

At2
8k:–(Y+4)(Z +4)=w2=0 (57)

(58)

which is identical with (12) assuming kz = Icy, kZ = O, and

co/cm = 1/2.
For wave propagating in (1, 1, 1) direction and for x = ~ =

(, respectively, there are again eighteen eigenvalues which
are calculated from (23). The first two eigenvalues Al, a = 1
represent the electro- and magnetostatic case. Four eigenvalues
As,,,,, G are given implicitly by

CotAa + 2c~zA + CO*= o (59)

thus we have with A = e~n

cl), Cos (Q) + Cli = o (60)

where either

COI=4+Z,

Cll =4+ z Cos(,x) (61)
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or

CIj2=4+Y,

C12 =4+ Y Cos(x). (62)

These eigenvalues represent unphysical solutions propagating
with a propagation velocity different from the propagation
velocity of the physical solutions. Approximating (60) for

frequencies around ~ = l/(2 At) using cos (x + n) N – 1 +
X2/2 and for wave numbers approaching zero using cos z w

1 – x2/2, we obtain

[
zk:–(4+z)$2

1

“[ At2

1
Yk:–(4+Y)mw2 =0 (63)

and

The other twelve eigenvalues AT,,,., 18 are given by the poly-
nomial

(COA’ + C,A5 + C2A4 + 2C3A3

+C2A2 +C1A+CO)2 = o (65)

resulting in

[co Cos (3Q) + c, Cos (2fl)

+ C2 CoS(Q) + c3]~ = o (66)

with

clj=(4+Y)(4+z)

Cl = 2[2 COS (x)(2Y + 2Z + YZ) + 16 – YZ]

CZ = –2(12 – YZ) COS(2x) – 8YZ COS(X)

+8–4Y–4Z+5YZ

C3 = –2(12 + YZ) COS(2x) – 4(2Y + 22 – YZ)

. COS(X) – 8 – 4YZ. (67)

Again, the approximation for frequencies and wave numbers

approaching zero coincides with the linear dispersion relation
of Maxwell’s equations

At2
12k:+(Y +4)( Z+4)=U2=0 (68)

and

At2 ~
3k; – 4E./U. ~ W = O. (69)

Approximating (66) for frequencies approaching zero using

cos z N 1 – X2/2 and for wave numbers around kz
using cos (z + m) w –1 + x2/2, we obtain

representing the dispersion relation of a unphysical
propagating with the wave propagation velocity of

= T/Al

(70)

solution
the free
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SCN with

space. This ambiguity of the dispersion relation for frequencies

approaching zero leads to the a~ppearance of spurious modes

[11], [20], [21].

Figs. 3–5 illustrate the dispersion characteristics of the

eigenvectors describing the propagating solutions of the
TLM scheme for the stub-loaded SCN modeling an isotropic
medium with s. = 4, pr = 1 denoted by medium 1 and
an isotropic medium with ~r =: p. = 2 denoted by medium
2, Beside for frequencies approaching zero, the dispersion

characteristics are different when modeling the two isotropic
media. This is in contrast to the linear dkpersion relation

of Maxwell’s equations. Note that for wave propagation in

(1, 1, O) direction, see Fig. 4, there are two branches of the
dispersion curve for the SCN m~odeling medium 1 converging
to the one branch of the linear clispersion curve. Each of these
branches is associated with two physical eigenvectors. In all
other cases, there is only one branch converging to the linear
dispersion curve, thus these branches are associated with four
physical eigenvectors.
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For the branches corresponding to physical eigenvectors, the
deviations from the linear dispersion curve are both positive

and negative depending on the value of the frequency. In [7],
the existence of both positive and negative frequency errors

was observed in dependence of the material parameters sr. and

p. and in dependence of the directions of wave propagation.

Our results confirm this effect called bilateral dispersion.
However, they also show that bilateral dispersion does not
affect the accuracy of field computation if the discretization
interval Al is chosen sufficiently small. For wave propagation
in (1, 1, 1) direction, the ambiguity of the dispersion relation
for frequencies approaching zero becomes obvious. The dif-
ferent propagation velocities become apparent by the different

gradients of the dispersion curves for frequencies approaching

zero.

IV. THE DISPERSION ANALYSISOF TLM WITH SSCN

The SSCN has been proposed recently by Trenkic et rd. [5],
[8]. The scattering at the SSCN is described by a symmetrical
12x 12-matrix. We restrict our investigations to a regular mesh
with Ax = Ay = A.z = Al. In contrast to [5], [8], we
normalize the wave amplitudes in terms of power amplitudes
which is necessary to obtain a unitary scattering matrix given
by

[1

al B, 02
s= p~ rl~ p~ (71)

P: P; ~3

with (72), shown at the bottom of the next page, and

o f fo——
I+fz –I+fz

0
f f0 –— —

I+fz I+fz
c c!

1*C2 1*C2
o 0

1+C2 ‘1+C2
o 0

I

I
o
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1 +$2

‘l+ez

wherein

o

0

l+a2

b
o—

l~b2

o—
l+bz

e
0

‘l$ep
0

l+ez
d

o—
1 +f

o ——
l+d2

a
0

1 ~az

o
l+az

b

l~b2

l+b2
o

0

l+d2

o

0

b = @mJ.zzy

(73)

(74)

The impedances .Zi,~ with z, j G {x; y; z} represent the nor-

malized wave impedances of the transmission lines. The index
z indicates the direction. the second index j the polarization
of the line [5]. For Ax = Ay = Az = Al, the connection
operator in wave vector domain is given by

~ =e-Jx(A1,2 + A3,4) + eJ~(A2,1 + A4,3)

+ e-Jq(As.6 + A7,8) + ~3q(A6, 5 + A8, 7)

+ e-Jf(Ag$lo + AII.12)

(75)+ e]f(Alo, g + A12, 11).

At first, we consider wave propagating in (1, O, O) direction
in symmetric anisotropic media. The evaluation of (23) yields
twelve eigenvalues. Four eigenvalues are given by

A1.2=1

and

,43,4 =-1 (76)

representing again the electro- and magnetostatic case and un-

physical solutions oscillating with the frequency f = l/(2At),
respectively. The other eight eigenvalues As, , Iz are given
implicitly by

CotAb + C’IZA3+ 2C2JZ + CILA + co, = o (77)

and with A = e~n by

Coz Cos (2Q) + c~, Cos (Q) + C2,= o (78)

with the two sets of coefficients

CoI =(1+ ;2)(1 +ez)

CII = 2(e2 – C2)[COS(x) – 1]

CM = (C2 – 1)(1 – ez) – 2(c2 + ez) CUS(X) (79)
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and These six relations yield the relations between the normalized

impedances and ~~~, Prico,=(1 + b’)(1 + f’)

cl~ = 2(b’ – f’)[cos (x) – 1]

c“ = (b’ – 1)(1 – fz) – 2(b’ + f’) Cos(x). (80)

The approximating of (78) for frequencies and wave numbers
approaching zero using cos x z 1 – X2/2 yields

[

At’
c2k~ – (1 + c2)(l + e2) ~ W2

1

[ 1
. f’k: -(1+ b’)(1 + f’);;W2 = o. (81)

Zvz+ Zzy
/l,z . ——

2
2., + z,.

&.y . ——

2
Zxy + .Zy.

p., =
2“

Considering cO/cm = 1/2, the comparisonof(81) to the linear
dispersion relation of Maxwell’s (10), requires (84)

~ ~Tv = (1+ c’)(1 + e’)
rz

4C2
Equations (82) and (83) represent the basis for a correct
modeling of symmetric anisotropic media using the SSCN.
Note that exchanging e., and pri in these equations yields the

same set of eigenvalues in the dispersion analysis of the SSCN.

However, the corresponding eigenvectors do not converge

to the eigenvectors of Maxwell’s equations for frequencies

approaching zero.

The dispersion in a TLM mesh for wave propagation in
(1, O, O) direction in a symmetric anisotropic medium with
ETZ = 8, .e.y = 2, Erz = 1.5 and p.Z = 2, prY = 1,

fl~~ = 2.5 1Sillustrated in Fig. 6. Calculating the parameters of
the scattering matrix from (82) and (83), we obtain two sets of
parameters resulting in two different dispersion relations. For
one set, the parameters a, b, c, d, e, and f have low values

(the dispersion curves are denoted by Zl), for the other set,

(1+ b’)(1 + f’)
%yprz = 4f2 “ (82)

Evaluating the dispersion relation for wave propagation along

the y- and z-axis in the same way, we obtain

(1+ a’)(1 + f’)
&TzpTz =

4a2
(1+ c’)(1 + d’)

Erzprz =
dd’

~ pry= (1 + a’)(1 + ez)T

4e2

E,yvrz = (1+b’)(1+ d’)db’ “ (83)
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Fig.6. Dispersion diagram for propagation in (1, O, O) direction, SSCN,
anisotropic medium.

the values of the parameters are high (the dispersion curves
are denoted by Z2). As for the SCN with stubs, two branches
of the dispersion curve are identical with the two branches of
the linear dispersion curve for frequencies approaching zero
(four physical eigenvectors), whereas the other two branches
do not converge to the branches of the linear dispersion curve
(four unphysical eigenvectors).

Considering wave propagation in (1, 1, 0) direction, we

obtain the same four eigenvalues as in (76). The other eight

eigenvalues }5,. ,12 are given implicitly by

CO,A1 + C1J3 + 2c2~A2 + C’lJ + cot= o

resulting in

Coi Cos (20) + Clz Cos (Q) + C2, = o

with

Col =(1+ C2)(1 + d2)(l + e2)

C~~ =2(1+ c2)(e2 – d2)[cos (z) – 1]

C21 = (d2 + e2)(l + C2) – 1 – c2d2e2

– 2(1+ c2)(d2 + e2) cos(x)

- (C2 -i- d2e2) cos (2x)

and

co, =(1 + aa)(l + 1#)(1 + fa)

C12 = 2(b2 – J)(l -1-$2)[COS (X) – 1]

C~a = (az + b2)(l + ~z) – 1 – a2b2f2

– 2(1+ f2)(a2 + b2) cos(z)

- (~2 + a2b2) cos (2X).

LinearD6persion
Relation
Dispersionfor
SSCN, ZI
Dispersionfor
SSCN, 22

Fig. 7. Dispersion diagram for propagation in (1, 1, O) direction, SSCN,
anisotropic medium.

L -1, J

confirming (84), as the approximation is identical with the
dispersion relation of Maxwell’s equations, (11).

Fig. 7 de~icts the results of the numerical evaluation of (86).
for a symmetric anisotropic medium with e,, = 8, C,Y = 2,

(85) &.z = 1.5 and p.. = 2, &ry = 1, PT. = 2.5. Again, the

dispersion curves for the set of the parameters a, b, c, d, e, and
f with low values are denoted by Z1, whereas the dispersion

(86) curves for the set of parameters with high values are denoted
by Z2. In contrast to the stub-loaded SCN, there are only two
branches which do not converge to the branches of the linear
dispersion curve (degeneration of the eigenvalues).

Considering isotropic media, we insert the conditions Cr. =

~Ty = .s,, = E. and p, Z = Pyg = ILT. = p, in (84) and obtain
two sets of the normalized impedances

(87)

The approximation of (86) for frequencies and wave numbers i
z,.= :(a+p)

approaching zero yields
r

[(

Zzg =
{

:(a+fl)
C2 + d2 -t c2d2 + d2e2)k~ T

L where we have introduced

-(1+ c2)(1 +d2)(l +e2) $U2
1

a==

[
(a2 + f2+ a2b2 + a2f2)k~

and

(91)

(92)

At2 2

1
-(l+a2)(l +b2)(l+f2)=w =0

(89) Equation (91) has already been derived considering the net-
work model of the SSCN [22]. For isotropic media, both sets
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of the impedances result in the same dispersion characteristics

and in the same wave propagation velocities, respectively. The
two sets of impedances lead to the same results for the field

computation, if the difference of the impedances is taken into
account in the mapping between the wave amplitudes and the

field components [23].
Evaluating (23) for isotropic media, we obtain the same four

eigenvalues as in (76). The other eight eigenvalues ~5,..., Iz

are given by the polynomial

(C,A’ + C,A’ + c,)’ = o (93)

with

co ==–Cvp,

c1 = 2eT,uT – 3 + Cos (x) Cos (~)+ Cos (x)

. Cos (~) + Cos (q) Cos (f) (94)

resulting in

4cTp,T sinz (0) = 3 – cos (x) cos (q) – cos (x)

. Cos (<) – Cos (q) Cos (<) (95)

which is identical with the result given in [8]. The approxima-
tion of (95) for frequencies and wave numbers approaching
zero and the approximation of (95) for frequencies around

~ = l/(2 At) and for wave numbers approaching zero yield
the same result,

=0. (96)

As for the SCN with stubs, the ambiguity of the dispersion re-
lation for frequencies approaching zero leads to the appearance
of spurious modes [11], [20], [21].

Figs. 8, 9, and 10 illustrate the dispersion characteristics of
the eigenvectors describing the propagating solutions of the
TLM scheme for the SSCN modeling an isotropic medium
with &r ,LLT = 4. In contrast to the SCN with stubs, the

dispersion characteristics in a TLM mesh with SSCN’S are
only dependent on the product of CP and pr corresponding to
the linear dispersion characteristics for isotropic media, (12).

Fig. 9,
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V. CONCI.USION

A systematic dispersion analysis and a

of unphysical solutions has been given

detailed discussion
for the SCN with

stubs and for the SSCN. It has been shown that the modeling
of symmetric anisotropic media using the SCN with stubs
leads to correct results and to results converging to solutions
of Maxwell’s equations for frequencies and wave numbers
approaching zero, respectively. However, there are nonphys-
ical eigenvectors describing solutions of the TLM scheme

which do not converge to solutions of Maxwell’s equations.

These unphysical solutions describe modes approaching a

frequency f = l/(2 At) for wave numbers approaching zero.

For the SCN with stubs, there are unphysical eigenvectors
describing nonpropagating solutions of the TLM scheme.
Furthermore, there are unphysical eigenvectors describing
propagating solutions of the TLNI scheme with a propagation
velocity different from the propagation velocity of the physical
solutions.

For the SSCN, there are six relations between the relative
permittivity and relative permeability and the parameters of
the scattering matrix. These six relations provide the basis
for a correct modeling of symmetric anisotropic media using
the SSCN. The mapping of the parameters of the scattering
matrix on the parameters describing the symmetric anisotropic
medium is not bijective. For given material parameters, there
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exist two different solutions for the scattering matrix and
the transmission line impedances yielding two different dis-
persion characteristics. However, both solutions result in the
correct modeling of the electromagnetic field for frequencies
approaching zero, if the difference in the transmission line
impedances is considered in the mapping between the wave

amplitudes and the field components [23]. Also for the SSCN,
there are unphysical eigenvectors. In contrast to the stub-

loaded SCN, these eigenvectors describe solutions propagating

with the same propagation velocities as the propagation veloc-
ities of the physical solutions.

The dispersion characteristics of the SSCN are superior
to the dispersion characteristics of the stub-loaded SCN.
However, for both nodes, there is an ambiguity of the dis-
persion relation for frequencies approaching zero leading to
the appearance of spurious modes. Thus both nodes exhibit

disadvantages with respect to the dispersion characteristics
when comparing them to the expanded and the asymmetrical
condensed TLM node or with the FDTD method [13].
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