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Dispersion in Anisotropic Media Modeled
by Three-Dimensional TLM

Christian Huber, Michael Krumpholz, Member, IEEE, and Peter Russer, Fellow, IEEE

Abstract—The dispersion in anisotropic media modeled by
three-dimensional TLM is investigated. Two nodes, the symmet-
rical condensed node with stubs and the symmetrical super-
condensed node are considered. Simple closed-form expressions
for the dispersion relations do not exist in general, therefore
the investigations are restricted to wave propagation in isotropic
media and to wave propagation along the mesh axes and the mesh
diagonals. The dispersion analysis for the symmetrical super-
condensed node yields a direct relationship between the relative
permittivity and relative permeability and the parameters of the
scattering matrix.

1. INTRODUCTION

OR the modeling of distributed circuits with arbitrary

geometries including also anisotropic media, numerical
methods based on the discretization of Maxwell’s equations
like the finite difference time domain (FDTD) method [1] or
the transmission line matrix (TLM) method [2] have become
more and more popular due to their high flexibility. For
the three-dimensional TLM modeling of anisotropic media,
various TLM schemes based on different nodes have been
developed and tested successfully [2]-[5]. However, there
have been only a few investigations about the dispersion of
these three-dimensional TLM schemes. Some results on the
dispersion in a mesh of expanded TLM nodes with stubs,
of symmetrical condensed nodes (SCN) with stubs and of
symmetrical super-condensed nodes (SSCN) have been given
[6]-[8]. Considering the dispersion relations is important since
deviations from the linear dispersion behavior degrade the
accuracy of the field computation. Furthermore, from the
dispersion relations, unphysical modes, i.e., modes not con-
verging to solutions of Maxwell’s equations may be identified.
In this paper, a systematic comparison of the dispersion
behavior and of the occurrence of unphysical modes is given
for the SCN with stubs and for the SSCN.

The dispersion relations for wave propagation in free space
have already been calculated in the literature for various FDTD
and TLM schemes [9]-[13]. We use a general approach for
the computation of the dispersion relations based on the state
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space representation of the discretized electromagnetic field
[14]-{16]. The dispersion relations of the two investigated
TLM schemes are calculated from the solutions of the eigen-
value problem in the field state space. We distinguish between
physical and unphysical eigenvectors in the field state space.
Physical eigenvectors describe solutions of the TLM scheme
which converge to solutions of Maxwell’s equations for fre-
quencies or discretization intervals approaching zero, whereas
unphysical eigenvectors describe spurious solutions which are
introduced by the discretization of Maxwell’s equations [17].

The paper is organized in three parts. In the first part, the
plane wave solutions of Maxwell’s equations are investigated.
The approach is similar to the approach presented in [18]. In
general, there are no simple closed-form expressions for the
dispersion relations of Maxwell’s equations describing wave
propagation in anisotropic media. Therefore, we restrict our
further investigations to the cases in which simple expressions
for the dispersion relations of Maxwell’s equations exist. These
cases are the wave propagation in isotropic media and the
wave propagation along the mesh axes and mesh diagonals in
symmetric anisotropic media. In the second and third part,
for these cases, we investigate the dispersion of the TL.M
schemes for the SCN with stubs and for the SSCN. A simple
closed-form expression for the dispersion relation exists for the
SSCN modeling isotropic media [8]. For all other investigated
cases, the polynomials representing the implicit dispersion
relations are given. Approximating the polynomials of the
SSCN for wave propagation along the mesh axes yields a
direct relationship between the parameters of the scattering
matrix and the relative permittivity and relative permeability
in symmetric anisotropic media.

II. PLANE WAVE SOLUTIONS OF MAXWELL’S EQUATIONS

Maxwell’s equations for anisotropic media are given by
VxH=¢g— (D
VXE=—-p—. (2)

In the principal coordinate system, the permittivity tensor £ and
the permeability tensor g for symmetric media are given by

e 0 0
e={0 ¢ 0
0 0 e,

and
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In cartesian components, Maxwell’s equations may be written
as

) 0 o E_ 2 -
ot ) ) EE o
0 €y G‘t 0 a 0 —a
0 0 0 — J i 0
5 28875 8ya oz
0 —— = — iy = 0 0
z Jy t
9 9 9
9 o Ho )
- = 0 . —
"5y oz 0 P= 5 |
E,
E’U
E, | _
ol = 0. ‘ 4)
Hy
H,
From (4), we obtain in spectral domain
M[EI, Eya Ezv Hm Hy7 HZ]T =0 (5)
where we have introduced the matrix
we, O 0 0 k., ky
0 we, O k. 0 Ky
10 0 we, ky - 0
M= 0 ky  ky  —wpy 0 0 ©)
k. 0 ko 0 —Why 0
ky ks 0 0 0 — Wby

The cartesian components of the wavevector k are k,, k,. and
k. The angular frequency w is related to the frequency f by
w = 27 f. For any nontrivial solution (5) requires [18]

det (M)=0 )]
which yields a characteristic polynomial in w, k;, ky, and &,
W Cow* — Crw? + Co) =0 (8)

with

Co =epeyespiatiytiz
Cy = ki(grfzﬂxﬂy + alybahtz)
+ k§(5w5yﬂfylf"z + 5y5z,umﬂy)
+ k2 (eneabiylis + yEapinitz)
Co = k2K (exply + eytin) + K2K2 (e piz + €2 p10)
+ kikg(ayuz +epy) + ki%#m
+ k;*syu,y + ke .. 9

+ Equation (8) has six solutions w, representing the disper-
sion relations of the six possible plane wave solutions for
Maxwell’s equations in symmetric anisotropic media. The
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solution w; o = 0 represents a statiopary solution corre-
sponding to the electro- and magnetostatic case. The other
four solutions w3, 4, 5,6 correspond io propagating plane wave
solutions of Maxwell’s equations. In general, simple closed-
form expressions do not exist for w3 456 [18]. In case of
wave propagation along the x-axis and in (1, 0, 0) direction,
respectively, we have k, = k, = 0 and obtain from (8)

Wi (k2 — eyp,w?) (k2 — e p,w?) = 0. (10)
Similar expressions may be derived for wave propagation
along the y- and z-axis. For wave propagation along the diag-
onal in the x—y-plane and in (1, 1, 0) direction, respectively,
we have k, = k, as well as k., = 0 yielding

w? [(5,Ij +ey k2 — s‘veypzwz]

: [(Nr + N'y)kazc - EzﬂxﬂyWQ] =0. (11)

Similar expressions may be derived for wave propagation
along the diagonals in the xr—2z- and y—z-plane. A significant
simplification of (8) is also given for isotropic media leading to

w?(k2 + k; + k2 —epw®)? =0. (12)
Of course, analyzing the dispersion of a TLM scheme, we can
only expect to find simple algebraic expressions for the cases
in which simple algebraic expressions exist for Maxwell’s
equations. Therefore, for the dispersion analysis of the TLM
method with stub-loaded SCN and SSCN, we will restrict
ourselves to the three cases described by (10), (11), and (12).

III. THE DISPERSION ANALYSIS OF
TLM witH STUB-LOADED SCN

Using the state space representation for the electromagnetic
field presented in [14]-[16], the amplitudes of all incident and
scattered waves are summarized in the Hilbert space vectors

+oo
ia/> = Z kal,m,nlk; l7 m, ’I’L>
k,l,m,n=~oc0
and
+oco
|b> = Z kbl,m,n|k; l) m, 7’L> (13)

k.l,m,n=—oc

The complete electromagnetic field state is represented by a
single vector |a) and |b), respectively, in the field state space
Hyw . The field state space is a product space of three vectors
spaces, Hy = C" ® H,, ® H;. In the r-dimensional complex
vector space C”, all the r wave amplitudes of the TLM node
with the coordinates k, [, m, and n are summarized in the
Vectors @ , ,, and b, ., ,, respectively. The indices /,
m, n, and k are the discrete space and time indices related
to the space and time coordinates via x = [Al, ¥ = mAl,
z =nAl and t = kAt where Al and At represent the space
and time discretization interval. To each mesh node with the
coordinates [, m, and n, we assign a base vector |I, m, n).
The set of vectors |{, m, n) is an orthonormal base of the
Hilbert space 7,,. The time states are represented by the
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base vectors |k) in the Hilbert space H;. The base vectors
[k; I, m, n) = [k)®|l, m, n) fulfill the orthogonality relations

(k1; L, m1, nalke; 2, mao, ng) =

5k1‘k2611,lz5m1,m26n1,"2' (14)

In TLM the instantaneous propagation of all wave pulses in
the mesh between adjacent node ports may be described by

la) = I'|b). (15)

The connection operator I” relates the waves scattered by the
TLM cells with the waves incident into the neighboring TLM
cells. In the TLM Hilbert space representation, I" is a matrix
of space shift operators [14]. The equation

|b) = T'S|a) (16)

describes the simultaneous scattering at all the mesh nodes. S
is the scattering matrix of the TLM node and T is the time
shift operator defined by

Tlk; 1, m, n) = [k +1; 1, m, n) (17)

thus indicating that the scattering by a mesh node is con-
nected with the time delay A¢. Eliminating the scattered wave
amplitudes, we obtain the eigenvalue equation

(I'TS - 1)]a) = 0 (18)

in the field state space H;y. We introduce new base vectors
of Ht,
00

2= 3 R,

k=—o0

(19)

with the normalized frequency 2 = 2xAtf, as well as new
base vectors for H,,,

+oo
om &)=y, QNI m ) 0)
l,m,n=—00
with the normalized wave vector components xy = Alk,,

n = Alky, and £ = Alk,. As shown in [13], restricting the
dispersion analysis to the case of plane wave propagation, (18)
yields

(I'S = &) a(x, m, £) =0 1)

in frequency and wave vector domain. The vector of the plane
wave amplitudes, d(x, 17, £), is given by
+oo

2.

I,m,n=—c

LeI0dtnmEen) 00y

a'(Xa 7, é.) = k@l m

?

The connection operator in wave vector domain, I’, represents
an r-dimensional matrix with the elements e/X, e, and e’.
(21) requires

det (T'S — ') =0 (23)

for any nontrivial eigenvector @(x, n, &).
The scattering of the wave amplitudes at one stub-loaded
SCN is described by a 18 x 18 matrix [3]. In comparison with
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the SCN for the free space [3], six stubs have been added in
order to model dielectric and magnetic media. The scattering
matrix in symmetrical notation [16], [19] is given by

_[Sy KT
S = [ K L ] 24)
where
a% B B
Sp = 1 @2 ,33 (25)
T T
2 3 a3
with
[Qy>  Cyz 0 0 7
Cyz Gy, O 0
=10 0 Gy Cay
L 0 0 cuy Goy
[Gzz Czx O 07
| Czx Qg 0 0
2= 0 0 Q> Cgz
L O 0 cu» amj
[Gzy Coy O 0 7
_|Cey Qay O 0
=10 o0 Gye Cyx
L O 0 cye ayed
ro 0 d, —d,
0 0 —d. d,
= b, b, 0 0
b, b, 0 0
r o 0 b, by7
0 0 by by
R I A
l~-d, d, 0 0]
0 0 d, —d;T
0 0 -d, d;
Bs=1lb, b, 0 0 (26)
Lb, b, 0 0 |

as well as (27), shown at the bottom of the next page, and

. 0 0 0 0 0
0 g, 0 0 0 0
o 0 g 0 0 o0
L=10 0 0 hn o o0 (28)
0 0 0 0 h O
0 0 0 0 0 h

The matrix elements for the subscripts 7, 7 € {z; y; 2} are
given by

i |4
Ay j = —
d 20Y,+4)  2(Z,+4)
2
b=y
. Y,  Z
YPT 244 2Z,+4)
2
d, =
_ VY
€, V.14
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=7
_Yi—4
A A
Z,—4
P 29
h; 7 14 (29)
wherein
AyAz
Za =4 (“”” AzAl 1)
AzAz
=4 p, -1
AzAy
2z =4 (“ AzAL 1)
AyAz
Y. "4<6"’f AzAl 1)
AzAz
Y, =4 (ary AyAl — 1)
AzAy
Y, =4 (srz AL 1> (30

with w; = s/ po and g,; = €,/¢€¢. For the dispersion analysis
of the SCN with stubs, we assume Az = Ay = Az = Al.
In this case, the connection operator in wave vector domain
is given by

T = e_JX(AL 2+ A3,4) + GJX(AQ7 1 -+ A4’ 3)
+ e (As,6 + Ar,8) + 7 (As, 5 + As 7)
+ e % (Ag 10 + A1, 12) + €5 (A1g,0 + A1z, 11) (31
+ Az, 13+ Aig, 14 + A1s,15 — Aie, 16

— Ayz, 17 — Aig, 18 (32)

with the 12 x 12 (m, n)}-matrix (Ap n')m.n = Om/ mOn/ o

We consider wave propagation in (1, 0, 0) direction in
symmetric anisotropic media. In this case, we have n = £ = 0.
There are eighteen eigenvalues \; = 7% of (21) and eighteen
solutions of the characteristic (23), respectively. Ten of the
eigenvalues are given by

)\1‘2 = 1
and

A3, 10 = —1. (33)

The eigenvectors corresponding to these eigenvalues describe
nonpropagating solutions in a TLM mesh. As A = 1 implies
2 = 0, the eigenvalues A; 2 represent the electro- and
magnetostatic case. As A = —1 implies @ = =7, the eigen-
vectors corresponding to Az ... 19 are unphysical eigenvectors
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oscillating with the frequency f = 1/(2At). The other eight
eigenvalues are given implicitly by the following factors of
the characteristic equation

Co N+ C1 X2 + 20,2+ CL A+ Co, =0 (34)
and with A = ¢’ by
Co, cos(2Q) + Cy; cos () + Cy, = 0. (35)

The two factors of the characteristic equation are specified by
the two different sets of coefficients

Cor =(4+Yy)(4+ Z.)

Cy =2(2Y, +2Z, + Y, Z.)[cos (x) — 1]

Cn =Yy Z, —2(8+2Y,4+2Z,+Y,Z,) cos(x) (36)

and

Coz = (4+Y2)(4+ Zy)
Ci2 =2(2Y, +2Zy + Y. Zy)[cos (x) — 1]
Cyo =Y. 7, — 28+ 2Y, + 2Z, + Y. Z,) cos (x). (37)

We approximate (35) for frequencies and wave numbers
approaching zero using cos £ ~ 1 — 22/2 and obtain

At?
[4k§ ~(4+Y,)(4+7Z,) @uﬂ]
At?
: [4%’ - (4+Y,;)(4+Zy)—A—Z§w2} =0 (38

and
At?
.2 2
[l‘u'r — 467‘yﬂlr; mw :|
At?

: l:k% —4erfhry 2:| =0
respectively. With the well-known relation co/cy, = 1/2 [3],
where ¢g represents the wave propagation velocity of the free
space and ¢,, = Al/At the velocity of the wave pulses in the
TLM mesh, (39) is identical with the dispersion relation of
the propagating plane wave solutions of Maxwell’s equations
given by (10). For wave propagation along the y- and z-axis,
a dispersion analysis yields similar results.

Fig. 1 illustrates the dispersion in a TLM mesh for wave
propagation in (1, 0, 0) direction in a symmetric anisotropic
medium with ¢, = 8, &,y = 2, &,, = 1.5 and p,; = 2,
try = 1, pr, = 2.5. For the figures in this paper, we generally
consider only the eigenvalues describing propagating solutions
of the TLM scheme. In the diagram, there are two branches
of the linear dispersion curve corresponding to the solutions

0 0 0 0 0
ey e O 0 0
0 0 e, e, €y
K= 0 0 O 0 —f=
0 0 fy —fy 0
-f. f. O 0 0

€x (2 Ex [ 0 0
0 0 0 0 e e
0 0 0 0 0 0
0 0 0 0 fo —f @7
0 0 —f, f, 0 0
f. —f. 0 0 0 0
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___ Linear Dispersion
Relation

-- — Dispersion for SCN

Fig. 1. Dispersion diagram for propagation m (1, 0, 0) direction, SCN with
stubs, anisotropic medium.

of the characteristic (10) for 0 < € < = and corresponding
to the four propagating plane wave solutions of Maxwell’s
equations, respectively (degeneration of the eigenvalues). For
the SCN with stubs, two branches of the dispersion curve
are identical with the two branches of the linear dispersion
curve for frequencies approaching zero. The corresponding
four eigenvectors represent physical eigenvectors. The other
two branches do not converge to the branches of the linear
dispersion curve, thus the corresponding four eigenvectors
represent unphysical eigenvectors.

Considering wave propagation in (1, 1, 0) direction, we have
x = n as well as £ = 0. Evaluating (23) we obtain the six
cigenvalues

)\Lg =1
and

g =—L (40)

Again, the corresponding eigenvectors describe electro- and
magnetostatic solutions and unphysical solutions, respectively.
The other twelve eigenvalues A7 ... 1g are given implicitly by

CoiX® + 01 A° 4 CgiA* + 203,
+ Co A+ C, A+ Cp, =0

and with A = &/ by
Coi cos (382) + C1, cos (2Q) + Co; cos(2) + C3, = 0. (42)

(41)

The coefficients are

Coo=4+Y)4+Y,)4+2Z.)
Ci =4(4Y, +4Y, + 2V, Y, + 87, + 3Y. Z,

+3Y, 2, + Y, Y, Z,) cos(x)

+2(64 + 8Y, +8Y, - 2Y, 7, —2Y, Z, - Y, Y, Z,)
Ca1 =—2(16 + 4Y, +4Y, —~4Z, — 2V, Z.

-2Y,Z, - Y, Y, Z,) cos(2x)

—8(16 +4Z, + 2V, Z, + 2Y, Z, + Y, Y, Z.)

- cos (x) + 96 — 8Y, — 8Y, — 4Y, Y,

+87, +8Y,Z, +8Y,Z. + 5Y, Y, Z.
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Cs1 = —2(16 + 4Y, + 4Y,, + 4Z, + 2Y, Z,
+2Y, 2, + V.Y, Z,) cos(2x) — 4(32 + 4Y,
+AY, +2Y,Y, — YoZ, — Y, Z, - YaY,Z.)
~cos(x)+4(8—-2Y, —2Y, —-6Z, -2V, Z,
—2Y,7, - Y,Y,Z.) 43)

and

Copo=(4+Y) 4+ Zs)(4 + Z)

Cro = 4470 + 42y + 22,7y + 8Y. + 3Y. Z,
+3Y.Zy, +Y.Z,Zy) cos(x)
+ 264+ 82, + 82, — 2V, Zy — 2V, Z, — Y, ZoZy)

Cop =~2(164+4Z, + 42, — 1Y, — 2Y, Z,
-2Y.Z,-Y,.Z,Z,) cos(2x)
—8(16 +4Y, +2Y,Z, +2Y,Z, + Y, Z,Z,)
- cos (x) +96 — 82, — 82, — 42,7, + 8Y,
+8Y.Z, +8Y,Z,+5Y,2,2,

Cap =—~2(16 + 42, + 42, + 4Y, + 2V, Z,
+2Y, 2y + Y. Z,Z,) cos (2x) — 4(32 + 42,
A2y + 2202y~ YTy — Y, 2y — Yo 2o )
- cos(x)+4(8—2Z, —-2Z, — 6Y,

—2Y,Z, ~ 2V, Zy — Y. 2 Zy). (44)

The approximation of (42) for frequencies and wave numbers
approaching zero yields

[4(8 + Y, + Y )kE - (4+Ys)

At?
A+ V)4 + 2:) 35 wZ}

[4(8 +Zo+ Z)k% - (44 Y2)

A 5] 4
-(4+Zz)(4+Zy)Zﬁw =0 (45)
and
A,
I:(g'rr + 5ry)k§ - 45ra:5ryl/frz —Aﬁ w :l
At?
2 2|
' l:(:um + N‘y)kz - 4€rz,ufrrlffry A_li w ] =0 46)
in terms of e,, and p,;. Again, using co/cm, = 1/2, we

obtain a result which is identical with the dispersion relation of
the propagating plane wave solutions of Maxwell’s equations,
(11). Similar results may be calculated for wave propagation
along the diagonal in the z—2- and y—z-plane.

Fig. 2 depicts the results of the numerical evaluation of (42)
for a symmetric anisotropic medium with €., = 8, £y = 2,
€ry = 1.5a0d firg = 2, pipy = 1, phrz = 2.5. Asin Fig. 1, there
are two branches of the dispersion curve for the SCN which
are identical with the two branches of the linear dispersion
curve for frequencies approaching zero thus corresponding to
four physical eigenvectors. There are four branches which do
not converge to the branches of the linear dispersion curve.
With each of these branches, one unphysical eigenvector is
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Fig. 2. Dispersion diagram for propagation 1n (1, 1, 0) direction, SCN with
stubs, anisotropic medium.

associated so that there is no degeneration of the corresponding

eigenvalues.
We investigate the wave propagation in isotropic media.
For this case, we have €,;, = e,y = &y = & as well

aS g = Mry = Hrs = W and therefore Z, = Z, =
Z, = ZawellasY, =Y, =Y. =Y. In contrast to
(12), the evaluation of (23) does not yield a simple algebraic
expression. Thus, for isotropic media, we only consider wave
propagation in (1, 0, 0) direction, in (1, 1, 0) direction
and in (1, 1, 1) direction (along the space diagonal with
respect to the TLM mesh). For wave propagation in (1, 0,
0) direction, the characteristic polynomials, (34), may not be
simplified significantly assuming the isotropic case. For wave
propagation in (1, 1, 0) direction, the polynomial in (41) splits
in two parts. The eigenvalues Ay, ... ¢ are again given by (40),
whereas the eigenvalues A7 ... 19 are given by

CoiX* + 201, A + Cp, = 0 (47)

and with X = &/ by
Coi cos(Q)+Cp, =0 (48)

with

Co1 =4+ Z,

Ci1 =2+ Z)cos(x)+2 49)
and

Coz =4+Y,

Cia=(2+Y) cos(x) + 2. (50)

We approximate (48) for frequencies around f = 1/(2At)
using cos(z + ) ~ —1 + 2%/2 and for wave numbers
approaching zero using cos z &~ 1 — 2%/2. We obtain

A2,
Az

At?

[(2 + 22— (4+ 7Z)

D

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL 43, NO. 8, AUGUST 1995

and

1Y,, A2,
K“ﬂ)km’

1Y, A2 4]

respectively. The eigenvectors corresponding to these eigen-
values describe unphysical solutions propagating with a prop-
agation velocity different from the propagation velocity of
the physical solutions. However, using an excitation with a
frequency spectrum bounded sufficiently below f = 1/(2A%),
the unphysical solutions will not be excited and thus, they will
not affect the accuracy of the field computation.

The other eight eigenvalues Ai, ... 1sare given by the fol-
lowing factors of the characteristic equation

Co Xt + CLA + 205,02 + Ci A + Co, = 0

(52)

(53)
and

Co, €08 (2Q) + C1; cos () + Co; =0 (54)
respectively, specified by the two different sets of coefficients

Co1 = (4 + Y)(4 + Z)
Ci1 = Z(ZY +YZ - 8)[COS (X) - l]

Cor=YZ —4Z-284+2Y +YZ)cos(x) (55
and

Coo=4+Y)4+2)

Ci2 =2(2Z +Y Z — 8)[cos (x) — 1]

Coy =YZ —4Y —2(842Z+YZ) cos(x). (56)

As for wave propagation in (1, 0, 0) direction in isotropic
media, for both sets of coefficients, (54) converges to the same
linear dispersion relation for frequencies and wave numbers
approaching zero. Using cos x ~ 1 — 22/2, we obtain

8k2—(Y+4)(Z+4)A—t2w2—O (57)
® AT T
and
2 2 2
-9 —__ —
kz — 2erpr Az =0 (58)

which is identical with (12) assuming &, = ky, k. =0, and
Co / Cm = 1 / 2.

For wave propagating in (1, 1, 1) direction and for y = n =
&, respectively, there are again eighteen eigenvalues which
are calculated from (23). The first two eigenvalues A; 2 = 1
represent the electro- and magnetostatic case. Four eigenvalues
As, .. ¢ are given implicitly by

CoA® + 201, A + Co, = 0 (59)
thus we have with \ = /%
Co,cos()+Cp; =0 (60)
where either
Cor =4+ 2,
Ci1 =4+ Z cos (x) 61)
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or

Coe =4+Y,

Cr2 =4 +Y cos(x). (62)

These eigenvalues represent unphysical solutions propagating
with a propagation velocity different from the propagation
velocity of the physical solutions. Approximating (60) for
frequencies around f = 1/(2A¢) using cos(z + ) ~ -1 +
7% /2 and for wave numbers approaching zero using cos  ~

1 — 22/2, we obtain
At?
Zk% — (4 = 2
{ s - (4+2) Azzw}

2

: {Yk,% - (4+4Y) % w2] =0 (63)
and
1 At?

1—— k2~ 2

[( m«) s T ARY }

1 At?
. [(1_5_> ki—m(ﬂ} =0. (64)

The other twelve eigenvalues A7 ... 1z are given by the poly-
nomial

(CoA® + C1 A% + CoA* + 20303

+CoA? + C1A+ Co) =0 (65)
resulting in
[Co cos (3Q2) + C cos (2€2)
+ Cy cos (Q) 4+ C3)* =0 (66)
with
Co=(4+Y)(4+2)
Cr=2[2cos(x)(2Y +2Z2+YZ)+ 16 - Y Z]
Co=—2(12-YZ) cos(2x) —8Y Z cos(x)
+8-4Y -4Z2+5Y7Z
Cs=-2(12+YZ) cos(2x) —12Y + 22 - Y Z)
- cos(x) —8—4Y Z. (67)

Again, the approximation for frequencies and wave numbers
approaching zero coincides with the linear dispersion relation
of Maxwell’s equations

2

¢
12k2 4+ (Y +4)(Z + 4) é—wz =0 (68)
Al?
and
At?
2 2 _
3kw - 457*/1"[' —Aﬁ w* = 0. (69)

Approximating (66) for frequencies approaching zero using
cos z ~ 1 — 22/2 and for wave numbers around k, = 7/Al
using cos (z + 7) ~ —1 + z22/2, we obtain
At?
3k2 -4 NG w? =0
representing the dispersion relation of a unphysical solution
propagating with the wave propagation velocity of the free

(70)
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Fig. 4. Dispersion diagram for propagation in (1, 1, 0) direction, SCN with
stubs, isotropic medium.

space. This ambiguity of the dispersion relation for frequencies
approaching zero leads to the appearance of spurious modes
[11], [201, [21].

Figs. 3-5 illustrate the dispersion characteristics of the
eigenvectors describing the propagating solutions of the
TLM scheme for the stub-loaded SCN modeling an isotropic
medium with &, = 4, p, = 1 denoted by medium 1 and
an isotropic medium with &, = p, = 2 denoted by medium
2. Beside for frequencies approaching zero, the dispersion
characteristics are different when modeling the two isotropic
media. This is in contrast to the linear dispersion relation
of Maxwell’s equations. Note that for wave propagation in
(1, 1, 0) direction, see Fig. 4, there are two branches of the
dispersion curve for the SCN modeling medium 1 converging
to the one branch of the linear dispersion curve. Each of these
branches is associated with two physical eigenvectors. In all
other cases, there is only one branch converging to the linear
dispersion curve, thus these branches are associated with four
physical eigenvectors.
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Fig. 5. Dispersion diagram for propagation in (1, 1, 1) direction, SCN with
stubs, isotropic medium.

For the branches corresponding to physical eigenvectors, the
deviations from the linear dispersion curve are both positive
and negative depending on the value of the frequency. In [7],
the existence of both positive and negative frequency errors
was observed in dependence of the material parameters &, and
u- and in dependence of the directions of wave propagation.
Our results confirm this effect called bilateral dispersion.
However, they also show that bilateral dispersion does not
affect the accuracy of field computation if the discretization
interval Al is chosen sufficiently small. For wave propagation
in (1, 1, 1) direction, the ambiguity of the dispersion relation
for frequencies approaching zero becomes obvious. The dif-
ferent propagation velocities become apparent by the different
gradients of the dispersion curves for frequencies approaching
zero.

IV. THE DISPERSION ANALYSIS OF TLM wITH SSCN

The SSCN has been proposed recently by Trenkic ef al. [5],
[8]. The scattering at the SSCN is described by a symmetrical
12 x 12-matrix. We restrict our investigations to a regular mesh
with Az = Ay = Az = Al In contrast to [5], [8], we
normalize the wave amplitudes in terms of power amplitudes
which is necessary to obtain a unitary scattering matrix given

by

a% B, B
S= ﬂ% a% Bs an
,32 ﬂs (4]
with (72). shown at the bottom of the next page, and
p O O f B f -
1+ f2 1+ f2
0 0o -7 /
Bi=| . . L+ /2 1+
a— 0 0
1 + 2 1 + c2
T 11 0 0]
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r 0 0 b b 7
14062 1+ b2
0 0 b b
B, = 1+02 1402
€ €
— ; 0 0
1+e2 1 4 €2
€
T le? 1+ €2 0 0
r 0 d d
1+ g2 14 d?
) . g d
By = N “ 14+d?2 1442 (73)
0 0
1+a2 1-+4a2
_e a 0 0
L1+a2 1+a2 J
wherein
a=4/Z.1/Zye
b=1/Zuy/Zoy
c=1\/Zy:/Zy-
d=\/Zys] %y
€= ZZI/ZCIZZ
f: \/ ZJy/ZyL- (74)

The impedances Z; , with ¢. j € {z; y; #} represent the nor-
malized wave impedances of the transmission lines. The index
1 indicates the direction, the second index j the polarization
of the line [5]. For Az = Ay = Az = Al, the connection
operator in wave vector domain is given by

T'=e77X(Ay2 + Ay 4) + €X(Ag, 1 + Ay 3)
+e (A5 6 + A?,s) + GJH(AG‘ 5 + Ag, 7)
+e #(Ag, 10 + A1 12)

+ e’ (A9 + Asz,11)- (75)

At first, we consider wave propagating in (1, 0, 0) direction
in symmetric anisotropic media. The evaluation of (23) yields
twelve eigenvalues. Four eigenvalues are given by

Ao=1
and

Az g =-1 (76)

representing again the electro- and magnetostatic case and un-
physical solutions oscillating with the frequency f = 1/(2A¢t),
respectively. The other eight eigenvalues A5 . 12 are given
implicitly by

Co At + CL A 4209, 02 + C1, A+ Co, = 0 (77
and with A = ¢/ by
Co, cos (2Q) + C1, cos () + Co, =0 (78)

with the two sets of coefficients
Co1 = (1 + ¢*)(1 +¢?)
Chi :2(6’2 - CQ)[COS (x) —1]
Car = (2 = 1)(1 — €2) —=2(2 + ) cos(x)  (79)
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and
Cop = (1 +8°)(1 + f*)
Cia =2(b* — fQ)[cos (x) —1]
Con = (B2 — 1)(1 — £2) — 2(8% + 12) cos (x).

The approximating of (78) for frequencies and wave numbers
approaching zero using cos z = 1 — x2/2 yields

(80)

At?

272 2 2

[c ki —(1+c)(Q+e )muﬁ]
At?

: [f?kg_ (1+b2)(1+f2)-/—5l—2w2} =0. (81)

Considering ¢o/c,, = 1/2, the comparison of (81) to the linear
dispersion relation of Maxwell’s (10), requires

1+c®)(1+e?
Erzlhry = (__6:4_)0(5__6_2
1+b2)(1+ f2
Eryllrz = (____a);?—f_) (82)

Evaluating the dispersion relation for wave propagation along
the y- and z-axis in the same way, we obtain

Erglhrz = (1 * az)(l * f2)
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These six relations yield the relations between the normalized
impedances and &,;, [t

1( 1 . 1)
Erg =7 5
U2\ Zyy Zaw
1( 1 N 1)
Epy == | =—=
Y2\ Z,,  Z.,
11 1
T T2\Z. " 7,
Zy, + 7,
Hrg = Y 2"‘?}
ZJJZ+ZZ$
ry — 2
rZ 4
5 (84)

Equations (82) and (83) represent the basis for a correct
modeling of symmetric anisotropic media using the SSCN.
Note that exchanging ,, and p,; in these equations yields the -
same set of eigenvalues in the dispersion analysis of the SSCN.
However, the corresponding eigenvectors do not converge
to the eigenvectors of Maxwell’s equations for frequencies
approaching zero.

The dispersion in a TLM mesh for wave propagation in

24a2 ) (1, 0, 0) direction in a symmetric anisotropic medium with
eropine = LT+ ) Ere = 8 &y = 2 s = L5 and pry = 2, piry = 1,
24d2 9 ez = 2.5 is illustrated in Fig. 6. Calculating the parameters of
Srafirg = (1+a%)(1+ _6_2 the scattering matrix from (82) and (83), we obtain two sets of
e 4e? parameters resulting in two different dispersion relations. For
c _ (14611 + _fﬁz (83) one set, the parameters a, b, ¢, d, e, and f have low values
rybra = 4p? (the dispersion curves are denoted by Z1), for the other set,
_ 1 — b2f2 _b2 4 f2 0 0 1
1+ +f2) 1+ +r2)
_b2 + f2 1— b2f2 0 0
= | @+ + ) 1+ +f)
a = —1+ c2e? c? —e?
0 0 (7)) O+ te)
0 0 2 —e? —1 + c2e?
L g s o OIS TF+) ]
r 1-c*d- —c* 4+ y
0 0
(1+e2)(1+d?) (1+E)(1+d?)
—c? + d? 1-c2d? 0 0
_|TFaar @) T+ e+ P
a9y = —1+a2f2 a2_f2
0
° A1+ A+
0 0 U/Z _ f2 —~1+ a2f2
: . J o, GEE) Grai+)-
r 1 —a“e —a°+e 1
0 0
A+a)(Ite?) (1+ad)(Ited)
—a? + €2 1 — a2e? 0 0
2Y(1 L o2 2 2
as = (1+a?)(1+e?) (L+a?)(1+e?) Py 2P (72)
0 0 T+ @) TED)(1Td)
0 0 b2 — 2 ~1+ b%d?
L (L+62)(1+d?) (L4621 +d?)-
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Fig. 6. Dispersion diagram for propagation in (1, 0, 0) direction, SSCN,
anisotropic medium.

the values of the parameters are high (the dispersion curves
are denoted by Z2). As for the SCN with stubs, two branches
of the dispersion curve are identical with the two branches of
the linear dispersion curve for frequencies approaching zero
(four physical eigenvectors), whereas the other two branches
do not converge to the branches of the linear dispersion curve
(four unphysical eigenvectors).

Considering wave propagation in (1, 1, 0) direction, we
obtain the same four eigenvalues as in (76). The other eight
eigenvalues As . 12 are given implicitly by

C(),/\4 -+ Clz)\g + 2C2i)\2 + CpA+Co, =0

(85)
resulting in
Co; cos (2Q) + Cy, cos () + Ca, =0 (86)
with
Cor = (14 )1+ d*)(1 +€?)
Ci1 =2(1 + ) (e? — d?)[cos (x) — 1]
Cop =(d® + M)A + %) — 1 — 2d2e?
— 21 + *)(d* + €2) cos (x)
— (c® 4 d?e?) cos (2x) (87)
and
Coo = (14 a®)(1 + b3 (1 + ?)
Cig =2(b* — a®)(1 + fH)cos (x) — 1]
Coa =(a®> +b%)(1+ %) — 1 — a®b*f?
—2(1 4 f*)(a® +b%) cos (x)
— (f* + a®b?) cos (2x). (88)

The approximation of (86) for frequencies and wave numbers
approaching zero yields

[(62 + d? + Pd? + d?e?)k?
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Fig. 7. Dispersion diagram for propagation in (1, 1, 0) direction, SSCN,
anisotropic medium.

and in terms of ., and pu,;
At?
[(Mrm + ll"l‘y)kz‘ - 45rz/ﬁr.xlfl'ry KZE w2:|

At?
. [(5m + ery)kE — derpErylleg NE wQ] =0 (90)

confirming (84), as the approximation is identical with the
dispersion relation of Maxwell’s equations, (11).

Fig. 7 depicts the results of the numerical evaluation of (86)
for a symmetric anisotropic medium with €., = 8, &7y = 2,
ers = L5 and pry = 2, tpy = 1, pe, = 2.5. Again, the
dispersion curves for the set of the parameters a, b, ¢, d, e, and
f with low values are denoted by Z1, whereas the dispersion
curves for the set of parameters with high values are denoted
by Z2. In contrast to the stub-loaded SCN, there are only two
branches which do not converge to the branches of the linear
dispersion curve (degeneration of the eigenvalues).

Considering isotropic media, we insert the conditions &,, =

Epy = Epz = & AN flyg = fpy = fly> = fir i0 (84) and obtain
two sets of the normalized impedances

Ty =125 (0 £6)

£

2= [2 @)
Lo = ’;—:mim
sz=\/5::<a¥ﬁ)
Zya =\ [ (a F )

r

2oy =2 (@5 5)

©n
where we have introduced
2 2 o A
_(1+c)(1+d)(1+e)Al2w o = /Ertin
and
2 2 22 2 22472
{(a + 7+ a™h" +a” )k B =+/erptr — 1. (92)
Atz . . . . _
—(1+ a2)(1 + 62)(1 + fz) NG wz] —0 (89) Equation (91) has already been derived considering the net

work model of the SSCN [22]. For isotropic media, both sets
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Fig. 8. Dispersion diagram for propagation in (1, 0, 0) direction, SSCN,
isotropic medium,

of the impedances result in the same dispersion characteristics
and in the same wave propagation velocities, respectively. The
two sets of impedances lead to the same results for the field
computation, if the difference of the impedances is taken into
account in the mapping between the wave amplitudes and the
field components [23].

Evaluating (23) for isotropic media, we obtain the same four
eigenvalues as in (76). The other eight eigenvalues A5, 12
are given by the polynomial

(CoA* + C1A* +Cp)?2 =0 (93)
with
Co = —Erlhy
C1 =2¢e,pyr — 3+ cos{x) cos(n) + cos(x)
- cos (&) + cos (n) cos (&) (94)
resulting in
de,pr sin? (Q) =3 — cos (x) cos (n) — cos (x)
- cos (&) — cos(n) cos(§)  (95)

which is identical with the result given in [8]. The approxima-
tion of (95) for frequencies and wave numbers approaching
zero and the approximation of (95) for frequencies around
f = 1/(2At) and for wave numbers approaching zero yield
the same result,

At? P
ﬁ w

K24+ K+ k2 = derpn 3

=0. (96)
As for the SCN with stubs, the ambiguity of the dispersion re-
lation for frequencies approaching zero leads to the appearance
of spurious modes [11], [20], [21].

Figs. 8, 9, and 10 illustrate the dispersion characteristics of
the eigenvectors describing the propagating solutions of the
TLM scheme for the SSCN modeling an isotropic medium
with €., = 4. In contrast to the SCN with stubs, the
dispersion characteristics in a TLM mesh with SSCN’s are
only dependent on the product of &, and p,. corresponding to
the linear dispersion characteristics for isotropic media, (12).
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Fig. 10. Dispersion diagram for propagation in (1, 1, 1) direction, SSCN,
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V. CONCLUSION

A systematic dispersion analysis and a detailed discussion
of unphysical solutions has been given for the SCN with
stubs and for the SSCN. It has been shown that the modeling
of symmetric anisotropic media using the SCN with stubs
leads to correct results and to results converging to solutions
of Maxwell’s equations for frequencies and wave numbers
approaching zero, respectively. However, there are nonphys-
ical eigenvectors describing solutions of the TLM scheme
which do not converge to solutions of Maxwell’s equations.
These unphysical solutions describe modes approaching a
frequency f = 1/(2At) for wave numbers approaching zero.
For the SCN with stubs, there are unphysical eigenvectors
describing nonpropagating solutions of the TLM scheme.
Furthermore, there are unphysical eigenvectors describing
propagating solutions of the TLM scheme with a propagation
velocity different from the propagation velocity of the physical
solutions.

For the SSCN, there are six relations between the relative
permittivity and relative permeability and the parameters of
the scattering matrix. These six relations provide the basis
for a correct modeling of symmetric anisotropic media using
the SSCN. The mapping of the parameters of the scattering
matrix on the parameters describing the symmetric anisotropic
medium is not bijective. For given material parameters, there
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exist two different solutions for the scattering matrix and
the transmission line impedances yielding two different dis-
persion characteristics. However, both solutions result in the
correct modeling of the electromagnetic field for frequencies
approaching zero, if the difference in the transmission line
impedances is considered in the mapping between the wave
amplitudes and the field components [23]. Also for the SSCN,
there are unphysical eigenvectors. In contrast to the stub-
loaded SCN, these eigenvectors describe solutions propagating
with the same propagation velocities as the propagation veloc-
ities of the physical solutions.

The dispersion characteristics of the SSCN are superior
to the dispersion characteristics of the stub-loaded SCN.
However, for both nodes, there is an ambiguity of the dis-
persion relation for frequencies approaching zero leading to
the appearance of spurious modes. Thus both nodes exhibit
disadvantages with respect to the dispersion characteristics
when comparing them to the expanded and the asymmetrical
condensed TLLM node or with the FDTD method [13].
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